Calculates the percentiles of a numeric variable in an
edsurvey.data.frame
, a light.edsurvey.data.frame
,
or an edsurvey.data.frame.list
.
Usage
percentile(
variable,
percentiles,
data,
weightVar = NULL,
jrrIMax = 1,
varMethod = c("jackknife", "Taylor"),
alpha = 0.05,
dropOmittedLevels = TRUE,
defaultConditions = TRUE,
recode = NULL,
returnVarEstInputs = FALSE,
returnNumberOfPSU = FALSE,
pctMethod = c("symmetric", "unbiased", "simple"),
confInt = TRUE,
dofMethod = c("JR", "WS"),
omittedLevels = deprecated()
)
Arguments
- variable
the character name of the variable to percentiles computed, typically a subject scale or subscale
- percentiles
a numeric vector of percentiles in the range of 0 to 100 (inclusive)
- data
an
edsurvey.data.frame
or anedsurvey.data.frame.list
- weightVar
a character indicating the weight variable to use.
- jrrIMax
a numeric value; when using the jackknife variance estimation method, the default estimation option,
jrrIMax=1
, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The \(V_{jrr}\) term (see Statistical Methods Used in EdSurvey) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (includingInf
) will result in all plausible values being used. Higher values ofjrrIMax
lead to longer computing times and more accurate variance estimates.- varMethod
a character set to
jackknife
orTaylor
that indicates the variance estimation method used when constructing the confidence intervals. The jackknife variance estimation method is always used to calculate the standard error.- alpha
a numeric value between 0 and 1 indicating the confidence level. An
alpha
value of 0.05 would indicate a 95% confidence interval and is the default.- dropOmittedLevels
a logical value. When set to the default value of
TRUE
, drops those levels of all factor variables that are specified inachievementVars
andaggregatBy
. Useprint
on anedsurvey.data.frame
to see the omitted levels.- defaultConditions
a logical value. When set to the default value of
TRUE
, uses the default conditions stored in anedsurvey.data.frame
to subset the data. Useprint
on anedsurvey.data.frame
to see the default conditions.- recode
a list of lists to recode variables. Defaults to
NULL
. Can be set asrecode=
list(var1=
list(from=
c("a",
"b",
"c"),
to=
"d"))
.- returnVarEstInputs
a logical value set to
TRUE
to return the inputs to the jackknife and imputation variance estimates which allows for the computation of covariances between estimates.- returnNumberOfPSU
a logical value set to
TRUE
to return the number of primary sampling units (PSUs)- pctMethod
one of “unbiased”, “symmetric”, “simple”; unbiased produces a weighted median unbiased percentile estimate, whereas simple uses a basic formula that matches previously published results. Symmetric uses a more basic formula but requires that the percentile is symetric to multiplying the quantity by negative one.
- confInt
a Boolean indicating if the confidence interval should be returned
- dofMethod
passed to
DoFCorrection
as themethod
argument- omittedLevels
this argument is deprecated. Use
dropOmittedLevels
Value
The return type depends on whether the class of the data
argument is an
edsurvey.data.frame
or an edsurvey.data.frame.list
.
The data argument is an edsurvey.data.frame
When the data
argument is an edsurvey.data.frame
,
percentile
returns an S3 object of class percentile
.
This is a data.frame
with typical attributes (names
,
row.names
, and class
) and additional attributes as follows:
- n0
number of rows on
edsurvey.data.frame
before any conditions were applied- nUsed
number of observations with valid data and weights larger than zero
- nPSU
number of PSUs used in the calculation
- call
the call used to generate these results
The columns of the data.frame
are as follows:
- percentile
the percentile of this row
- estimate
the estimated value of the percentile
- se
the jackknife standard error of the estimated percentile
- df
degrees of freedom
- confInt.ci_lower
the lower bound of the confidence interval
- confInt.ci_upper
the upper bound of the confidence interval
- nsmall
the number of units with more extreme results, averaged across plausible values
When the confInt
argument is set to FALSE
, the confidence
intervals are not returned.
The data argument is an edsurvey.data.frame.list
When the data
argument is an edsurvey.data.frame.list
,
percentile
returns an S3 object of class percentileList
.
This is a data.frame with a call
attribute.
The columns in the data.frame
are identical to those in the previous
section, but there also are columns from the edsurvey.data.frame.list
.
- covs
a column for each column in the
covs
value of theedsurvey.data.frame.list
. See Examples.
When returnVarEstInputs
is TRUE
, an attribute
varEstInputs
also is returned that includes the variance estimate
inputs used for calculating covariances with varEstToCov
.
Details
Percentiles, their standard errors, and confidence intervals are calculated according to the vignette titled Statistical Methods Used in EdSurvey. The standard errors and confidence intervals are based on separate formulas and assumptions.
The Taylor series variance estimation procedure is not relevant to percentiles because percentiles are not continuously differentiable.
References
Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. American Statistician, 50, 361–365.
Examples
if (FALSE) { # \dontrun{
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))
# get the median of the composite
percentile(variable="composite", percentiles=50, data=sdf)
# get several percentiles
percentile(variable="composite", percentiles=c(0,1,25,50,75,99,100), data=sdf)
# build an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)
sdfl <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB, sdfC, sdfD),
labels=c("A locations",
"B locations",
"C locations",
"D locations"))
# this shows how these datasets will be described:
sdfl$covs
percentile(variable="composite", percentiles=50, data=sdfl)
percentile(variable="composite", percentiles=c(25, 50, 75), data=sdfl)
} # }