Diagnostic plots for regressions can become too dense to interpret. This function helps by adding a contour plot over the points to allow the density of points to be seen, even when an area is entirely covered in points.
Usage
contourPlot(
x,
y,
m = 30L,
xrange,
yrange,
xkernel,
ykernel,
nlevels = 9L,
densityColors = heat.colors(nlevels),
pointColors = "gray",
...
)
Arguments
- x
numeric vector of the
x
data to be plotted- y
numeric vector of the
y
data to be plotted- m
integer value of the number of
x
andy
grid points- xrange
numeric vector of length two indicating
x
-range of plot; defaults to range(x)- yrange
numeric vector of length two indicating
y
-range of plot; defaults to range(y)- xkernel
numeric indicating the standard deviation of Normal
x
kernel to use in generating contour plot- ykernel
numeric indicating the standard deviation of Normal
y
kernel to use in generating contour plot- nlevels
integer with the number of levels of the contour plot
- densityColors
colors to use, specified as in
par
. Defaults to theheat.colors
withnlevels
. When specified,colors
overridesnlevels
.- pointColors
color for the plot points
- ...
additional arguments to be passed to a plot call that generates the scatter plot and the contour plot
Examples
if (FALSE) { # \dontrun{
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))
lm1 <- lm.sdf(formula=composite ~ pared * dsex + sdracem, data=sdf)
# plot the results
contourPlot(x=lm1$fitted.values,
y=lm1$residuals[,1], # use only the first plausible value
m=30,
xlab="fitted values",
ylab="residuals",
main="Figure 1")
# add a line indicating where the residual is zero
abline(0,0)
} # }